CALCULATING THE RADIATION COOLING OF SOLIDS

V. V. Salomatov UDC 536.2.01

We have derived an exact solution for the problem of the temperature field in solids cooled by
radiation in the quasi-steady regime stage. For the initial cooling period we propose an ap-
proximate method of determining the temperature field, and this method is based on the prin-
ciple of successive approximations., To facilitate the calculations, we have constructed engi-
neering nomograms.

In a number of contemporary branches of engineering we encounter the problem of cooling solids by
means of thermal radiation. Similar heat-transfer conditions are found in metallurgical processes of heat
treatment, etc,

The heat flow from the cooled heat-transfer surface is formed in accordance withthe Stefan— Boltzmann
law

~h(grad Tegr, = 0, (Texr — T (1)
If Tgyr > Ty, boundary conditions (1) assume the form
—A(grad T)ggy = 0, Teir © (2

The solution of problems relating to the steady-state process of heat transfer with radiative heat ex-
change involves substantial difficulties associated with the fact that the boundary condition (1) is nonlinear,
In such case, as a rule, we use certain numerical methods of solutions that are possible by means of digital
[1] or analog computers [2].

Here we propose a new approach to the analytical solution of radiation-cooling problems,
The mathematical formulation of this problem has the following form:

30 (X, Fo) _ y—v_ 0 [ v 98(X, Fo) ] ,

3Fo ox oX
28 (1, Fo)
%— — —SK[6* (1, Fo) — o], (4)
300, Fo)
9RO, FO) _ o gx, 0)=1. 5
e X, 0) (5)

Here 6 = T/Ty; Sk = 0,T§RA; T, is the initial temperature of the material; X is the relative coordinate;

v is a coefficient which characterizes the shape of the body and is numerically equal to 0, 1, and 2 in plane,
cylindrical, and spherical coordinate systems, respectively. Applying the Laplace integral transform to
(3)~ (5) we find the solution of the problem in the images
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8(X, s) = | 8(X, Fo)exp(—sFo)dFo;
0

U(l, s) = Sk pem, Fo) — 8% exp (— s Fo) d Fo.
5

Having completed the transition from the image to the original of the function, we derive the formal solution
of the problem, i.e,,
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If follows from (7) that the temperature at any cross section can be found only after we have deter-
mined the surface temperature, Assuming in (7) X = 1, we find the nonlinear functional equations for
(1, Fo), i.e.,
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It is not difficult to demonstrate — as is done, for example, in [3] - that the classical method of successive
approximations converges in the solution of a nonlinear functional equation of the form of (8). However, in
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TABLE 1, Roots of Eq. 10
Sk
34-v
ew
0,1 0,25 0,5 ' 0,75 ‘ 1,0
1
0 0,9264 0,8623 0,7978 0,7559 | 0,7345
0,25 0,9268 0,8628 0,7985 0,7570 0,7260
0,50 0,9310 0,8710 0,8138 0,7755 0,7489
0,75 0,9503 0,9087 0,8708 0,8486 0,8334
TABLE 2. Values of the Function &,(8, Sk/3+V)
sk
3+v
]
0,1 0,25 0,5 0,75 1,0

0,1 334,25 335,64 337,94 340,241 342,543
0,2 42,3043 43,261 44,855 46,4496 48,044
0,3 12,8276 13,550 14,7539 15,9579 17,1619
0,4 5,5745 6,1243 7,0406 7,9569 8,8732
0,5 2,9439 3,3598 4,0530 4,7461 5,4393
0,6 1,7483 2,0563 2,5697 3,0829 3,5963
0,7 1,1145 1.,3286 1,6854 2,0421 2,3989
0,8 0,7403 0,8742 1,0874 1,32086 1,5438
0,9 0,499 0,5626 0,6680 0,7734 0,8788
0,95 0,4093 0,4401 0,4914 0,5427 0,59406
0,99 0,3445 0,3505 0,3604 0,3703 0,3803

TABLE 3. Results from the Calculation of the Time and Tempera-

ture for an Unbounded Plate

Fo 0 (0, Fo)
8 (i, Fo) digital computerj Feo digital computer

after [12] data after [11] data
0,7 0.3912 0,38 0,3 0,90475 0,901
0,6 0,9807 0,98 0,5 0,8148 0,813
0,5 1,9696 2,0 1 0,6774 0,676
0,4 3,9696 4,07 2 0,5169 0,517
0,3 9,1035 9,1 5 0,3903 0,389
0,2 29,17 29 10 0,2975 0,301
0,1 224,56 224 50 0,1656 0,166

|

order to derive theoretical relationships more convenient from the practical standpoint, within whose struc-
ture we find no sums of infinite series, the solution of the formulated problem is achieved separately for
large and small values of the Fo number,

1, The Quasi-Study, We know [4] that on elapse of a certain period of time Fo > Fo, the body at whose
surface the heat flow is variable enters the stage of an ordered regime. From the physical standpoint this
suggests the self-similarity of the process, and this is expressed in that the distribution of the temperature
through the cross section with the passage of time is identical in nature, From the mathematical standpoint
this indicates that the last series in (7} and in (8) becomes relatively small in comparison with the remaining
terms, so that without introduction of some substantial error it is possible to neglect the entire series, With
consideration of this circumstance, we can derive the following closed solution for the integral equation (8):
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where 0, is found from the formula
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Now that we know the temperature at the surface of the body, on the basis of (7) we can calculate the tem-
perature at any point on the body from the formula

8 (X, Fo) = 6(l, Fo) +_S2L[e4(1, Fo) — 0% (1 — X?). (11
When 8, = 0 (poundary condition (2)) Eq. 9 assumes the form

Sk 1n84(I,F0)}—(L6;3-—— Sk Inei)=¢’1(9s ﬂﬁ)ﬂ@i(e*’ﬂ_)’(m)
3+w 3 3+wv 34w 3+

Sk (v + 1)Fo — [;—9-3(1, Fo) —
while 8, is found from (10) when 6 § = 0.

We note that the problem of determining the instant at which a specified surface temperature is attained
involves no particular difficulties, since the Fo number is not related by a functional relationship. To facili-
tate the execution of the calculations associated with the determination of the temperature 6 (1, Fo), Tables
1 and 2 give the values of the function ®(8, Sk/3+V) and of 0,, respectively. Table 3 shows the results from
the calculation of the time and the temperature field at the surface and at the center of a flat body (¥ = 0) and
there is a comparison with the data from the numerical integration carried out on the M-20 computer for the
case Sk =1.5, 8 =0,

Comparison of the calculation results confirms one more time that the derived solutions (9) and {11)
are analytically exact for the quasi-steady state.

2. Initial Period, We will demonstrate the method of solution on the example of the cooling of an un-
bounded plate, Expanding 1/shVs in (62) in a power series, limiting ourselves to the first member of the
expansion, and returning to the originals of the function, and using the Borel theorem, we can derive the
following formal solution:

vo _u—nr o _aine
. e 4n r 2 4n
8 (X, Fo) = 1 —SkS[B’*(l, Fo —n) — 8 &———dn — Sk | 6% (1, Fo—n) — 684 5—— dy. (13)
. § v n 6} ]/.TH']

Agssuming in (13) that X = 1, we find that the surface temperature satisfies the nonlinear integral Volterra
equation of the second kind

—i/q
—dn,
™

Fo Fo
8(l, Fo) = 1 —Skj (6 (1, Fo—n)—oY —2_ _ Sky[em, Fo — 1) — 6]
0

e
1

Van

4]

Let us evaluate the last integral in (14)
max [6* () — 6% = f (n) < M
for n € (0, Fo), Then

Fo Fo —
Sk " , e M _1jm_ —1/2 "2V Foe P I
Ey—— I,F—— ——Bw -—:—d < — e K dn=M — — 2 1 —erf — R
0 Fon—1 S < e = | S [y
0

n

where erf 1NV Fo is the error integral.
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Fig. 1. Nomogram for the calculation of the relative
temperature at the surface (a) and at the center () of

an unbounded plate, at the surface (¢) and at the axis (d):
(continued on next page) of an infinite cylinder.
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Fig, 1. (Continued)

Thus, for small values of Fo-this integral is extremely insignificant and in an approximate solution it
can be neglected without introducing significant error, Indeed, when Fo = 0,25 the quantity in the brackets
is equal to 0.0009, while when Fo = 0.35 it is 0,0045,

Bearing in mind that the kernel of the integral equation is not unique, to find the solution of that equa~
tion we can employ the classical method of successive approximations. As the zeroth approximation it is
advisable to choose the free term in (14). Having substituted the derived law governing the variation of sur-
face temperature into (13) and having performed the simple integration, we can write the final expression
with respect to the calculation of the temperature field for as high an order of approximation as onepleases.

The numerical calculations show that in all cases a reasonable eror is guaranteed, as a rule, if we
restrict ourselves to the second—third approximation. Carrying out analogous mathematical caleulations,
we can derive a solution by the above method for the problem of radiation cooling of an unbounded cylinder
or sphere,

There is some technical interest in using the proposed solution methods to develop engineering nomo-
grams which would make it possible to speed up the calculation of the temperature field in a radiation-cool-
ing regime, The figures show such nomograms for the calculation of the temperature; these calculations
are, respectively, for the temperature at the surface and at the center of an unbounded plate and cylinder,

It must be stressed that the proposed nomograms encompass a rather broad range of regime parameters and
are more universal, unlike the calculation graphs given in [1, 2],

We note that this method of solving nonlinear heat-conduction problems is applicable even when the
body contains an internal heat source of constant power,
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